Aminoglycoside resistance mediated by the bifunctional enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase.

نویسندگان

  • E Culebras
  • J L Martínez
چکیده

The expression of the bifunctional aminoglycoside inactivating enzyme 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase is the most important mechanism of high-level aminoglycoside resistance in Staphylococcus and Enterococcus. The enzyme is unique because it presents two different aminoglycoside-modifying activities located in different regions of the molecule. The gene aac(6')-aph(2") which encodes the synthesis of the enzyme is present in Tn4100-like transposons which are inserted both in R plasmids and the chromosomes of aminoglycoside-resistant isolates. The genetic structure of aac(6')-aph(2")-containing isolates indicates that their origin is not clonal, but plasmid conjugation together with multiple insertion events are in the basis of the rapid spread of aminoglycoside resistance among Gram-positive bacteria. There is not any prevalent genetic linkage of aac(6')-aph(2") with other antibiotic-resistance determinant. However, most methicillin resistant Staphylococcus strains present also high-level aminoglycoside resistance as the consequence of constant antibiotic pressure. This situation could change in the next future with the reported reemergence of gentamicin-susceptible MRSA isolates. Recent data show that inhibitors of eukaryotic protein kinases inhibit as well the aminoglycoside phosphotransferase activity. This effect indicates a common structure for these two families of proteins and opens the possibility for a meaningful survey of inhibitors of 6'-N-aminoglycoside acetyltransferase-2"-O-aminoglycoside phosphotransferase useful in clinical practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer.

The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycosid...

متن کامل

Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.

Aminoglycoside 2″-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci. We describe a novel aminoglycoside 2″-phosphotransferase from the Gram-negative pathogen Campylobacter jejuni, which shares 78% amino acid sequence identity with the APH(2″)-Ia domain of the bifunctional aminoglycoside-modifying enzyme aminoglycoside (6') a...

متن کامل

Purification and characterization of aminoglycoside-modifying enzymes from Staphylococcus aureus and Staphylococcus epidermidis.

Several strains of Staphylococcus aureus and Staphylococcus epidermidis, exhibiting characteristic resistance patterns to aminoglycoside antibiotics, were examined. The aminoglycoside-modifying enzymes from these strains were purified by DEAE-Sephadex A-50 chromatography, affinity chromatography, and Sephadex G-100 gel filtration. Three enzymes, a 3'-phosphotransferase III (molecular weight, 31...

متن کامل

Mechanism of resistance to aminoglycoside antibiotics in nebramycin-producing Streptomyces tenebrarius.

Streptomyces tenebrarius ISP 5477, which produces nebramycins, was highly resistant to the following aminoglycoside antibiotics: neamine, ribostamycin, butirosin A, neomycin B, paromomycin, kanamycin A, dibekacin, gentamicin C complex, lividomycin A, istamycin B and streptomycin. Polyphenylalanine synthesis on the ribosomes of this strain was highly resistant to neamine, ribostamycin, butirosin...

متن کامل

Aminoglycoside resistance profile and structural architecture of the aminoglycoside acetyltransferase AAC(6')-Im

Aminoglycoside 6'-acetyltransferase-Im (AAC(6')-Im) is the closest monofunctional homolog of the AAC(6')-Ie acetyltransferase of the bifunctional enzyme AAC(6')-Ie/APH(2")-Ia. The AAC(6')-Im acetyltransferase confers 4- to 64-fold higher MICs to 4,6-disubstituted aminoglycosides and the 4,5-disubstituted aminoglycoside neomycin than AAC(6')-Ie, yet unlike AAC(6')-Ie, the AAC(6')-Im enzyme does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1999